# **4.5 Rolle's Theorem**

#### 4.5.1 Definition

Let *f* be a real valued function defined on the closed interval [*a*, *b*] such that,

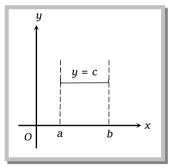
(1) f(x) is continuous in the closed interval [a, b]

(2) f(x) is differentiable in the open interval ]a,b[ and

(3) f(a) = f(b)

Then there is at least one value *c* of *x* in open interval ]*a*, *b*[ for which f'(c) = 0.

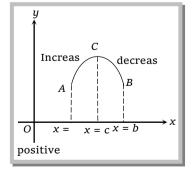
#### 4.5.2 Analytical Interpretation


Now, Rolle's theorem is valid for a function such that

(1) f(x) is continuous in the closed interval [a, b]

(2) f(x) is differentiable in open interval ]*a*, *b*[ and

(3) 
$$f(a) = f(b)$$


So, generally two cases arises in such circumstances.



🕀 www.studentbro.in

**Case I:** f(x) is constant in the interval [a, b] then f'(x) = 0 for all  $x \in [a,b]$ . Hence, Rolle's theorem follows, and we can say, f'(c) = 0, where a < c < b

**Case II:** f(x) is not constant in the interval [a, b] and since f(a) = f(b).



The function should either increase or decrease when x takes values slightly greater than a. Now, let f(x) increases for x > a

Since, f(a) = f(b), hence the function must seize to increase at some value x = c and decreasing upto x = b.

**CLICK HERE** 

Get More Learning Materials Here :

#### **234** Application of Derivatives

Clearly at x = c function has maximum value.

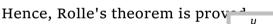
Now let h be a small positive quantity then, from definition of maximum value of the function,

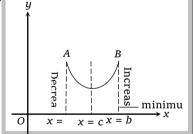
$$f(c+h) - f(c) < 0 \quad \text{and} \quad f(c-h) - f(c) < 0$$
  
$$\therefore \quad \frac{f(c+h) - f(c)}{h} < 0 \quad \text{and} \quad \frac{f(c-h) - f(c)}{-h} > 0$$

So,

 $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \le 0 \text{ and } \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} \ge 0 \qquad \dots \dots (i)$ 

But, if  $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h} \neq \lim_{h\to 0} \frac{f(c-h)-f(c)}{-h},$ 


The Rolle's theorem cannot be applicable because in such case,


RHD at  $x = c \neq$  LHD at x = c.

Hence, f(x) is not differentiable at x = c, which contradicts the condition of Rolle's theorem.

 $\therefore \text{ Only one possible solution arises, when } \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = \lim_{h \to 0} \frac{f(c-h) - f(c)}{-h} = 0$ 

Which implies that, f'(c) = 0 where a < c < b

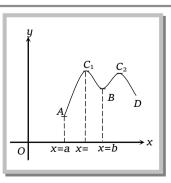




Similarly, the case where f(x) decreases in the interval a < x < c and then increases in the interval c < x < b, f'(c) = 0. But when x = c, the minimum value of f(x) exists in the interval [*a*, *b*].

**CLICK HERE** 

#### 4.5.3 Geometrical Interpretation


Consider the portion *AB* of the curve y = f(x), lying between x = aand x = b, such that

(1) It goes continuously from *A* to *B*.

(2) It has tangent at every point between A and B and

(3) Ordinate of A = ordinate of B

From figure, it is clear that f(x) increases in the interval  $AC_1$ , which implies that f'(x) > 0 in this region and decreases in the



🕀 www.studentbro.in

interval  $C_1B$  which implies f'(x) < 0 in this region. Now, since there is unique tangent to be drawn on the curve lying in between *A* and *B* and since each of them has a unique slope *i.e.*, unique value of f'(x).

 $\therefore$  Due to continuity and differentiability of the function f(x) in the region *A* to *B*. There is a point x = c where f'(c) = 0. Hence, f'(c) = 0 where a < c < b

Thus Rolle's theorem is proved.

Similarly the other parts of the figure given above can be explained, establishing Rolle's theorem throughout.

*Note* : On Rolle's theorem generally two types of problems are formulated.

□ To check the applicability of Rolle's theorem to a given function on a given interval.

□ To verify Rolle's theorem for a given function in a given interval.

In both types of problems we first check whether f(x) satisfies the condition of Rolle's theorem or not.

The following results are very helpful in doing so.

(i) A polynomial function is everywhere continuous and differentiable.

(ii) The exponential function, sine and cosine functions are everywhere continuous and differentiable.

(iii) Logarithmic functions is continuos and differentiable in its domain.

(iv)  $\tan x$  is not continuous and differentiable at  $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$ 

(v) |x| is not differentiable at x = 0.

(vi) If f'(x) tends to  $\pm \infty$  as  $x \to K$ , then f(x) is not differentiable at x = K.

For example, if  $f(x) = (2x - 1)^{1/2}$ , then  $f'(x) = \frac{1}{\sqrt{2x - 1}}$  is such that as  $x \to \left(\frac{1}{2}\right)^+ \Rightarrow f'(x) \to \infty$ 

So, f(x) is not differentiable at  $x = \frac{1}{2}$ .

**Example: 1** The function  $f(x) = x(x+3)e^{-1/2x}$  satisfies all the condition of Rolle's theorem in [- 3, 0]. The value of c is

(a) 0 (b) 1 (c) -2 (d) -3**Solution:** (c) To determine 'c' in Rolle's theorem, f'(c) = 0

Here 
$$f'(x) = (x^2 + 3x)e^{-(1/2)x} \cdot \left(-\frac{1}{2}\right) + (2x + 3)e^{-(1/2)x} = e^{-(1/2)x} \left\{-\frac{1}{2}(x^2 + 3x) + 2x + 3\right\} = -\frac{1}{2}e^{-(x/2)}\left\{x^2 - x - 6\right\}$$
  
 $\therefore \quad f'(c) = 0 \implies c^2 - c - 6 = 0 \implies c = 3, -2.$   
But  $c = 3 \notin [-3,0]$ , Hence  $c = -2.$ 

Get More Learning Materials Here : 📕

## 🕀 www.studentbro.in

236 Application of Derivatives

(a) a = 11

**Example: 2** If the function  $f(x) = x^3 - 6x^2 + ax + b$  satisfies Rolle's theorem in the interval [1, 3] and  $f\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right) = 0$  then

(c) a = 6

(b) a = -6

Solution: (a

a) 
$$f(x) = x^3 - 6x^2 + ax + b \Rightarrow f'(x) = 3x^2 - 12x + a$$
  
 $\Rightarrow f'(c) = 0 \Rightarrow f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0 \Rightarrow 3\left(2 + \frac{1}{\sqrt{3}}\right)^2 - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0$   
 $\Rightarrow 3\left(4 + \frac{1}{3} + \frac{4}{\sqrt{3}}\right) - 12\left(2 + \frac{1}{\sqrt{3}}\right) + a = 0 \Rightarrow 12 + 1 + 4\sqrt{3} - 24 - 4\sqrt{3} + a = 0$ 

(d) a = 1

**Rolle's Theorem** 

#### **Basic Level**

1. Rolle's theorem is true for the function  $f(x) = x^2 - 4$  in the interval(a) [-2, 0](b) [-2, 2](c)  $\left[0, \frac{1}{2}\right]$ (d) [0, 2]2. For which interval, the function  $\frac{x^2 - 3x}{x - 1}$  satisfies all the conditions of Rolle's theorem(a) [0, 3](b) [-3, 0](c) [1.5, 3](d) For no interval

3. If f(x) satisfies the conditions of Rolle's theorem in [1, 2] and f(x) is continuous in [1, 2] then  $\int_{1}^{2} f'(x) dx$  is equal

(a) 
$$\frac{\pi}{8}$$
 (b)  $\frac{\pi}{6}$  (c)  $\frac{\pi}{4}$  (d)  $\frac{\pi}{3}$ 

5. If the function  $f(x) = ax^3 + bx^2 + 11x - 6$  satisfies the conditions of Rolle's theorem for the interval [1, 3] and  $f'\left(2 + \frac{1}{\sqrt{3}}\right) = 0$ , then the values of *a* and *b* are respectively (a) 1, -6 (b) - 2, 1 (c) -1,  $\frac{1}{2}$  (d) - 1, 6

Get More Learning Materials Here : 📕

to [DCE 2002]

CLICK HERE

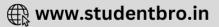

## 🕀 www.studentbro.in

Application of Derivatives 237

| 6.  | ause [AISSE 1986;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                                            |                              |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------|------------------------------|--|--|--|--|--|
|     | MP PET 1994, 95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                            |                              |  |  |  |  |  |
|     | (a) f is not continuous o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n [- 1, 1]                   | (b)                                        | f is not differentiable on ( |  |  |  |  |  |
|     | 1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                            |                              |  |  |  |  |  |
|     | (c) $f(-1) \neq f(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | (d) $f(-1) = f(1) \neq 0$                  |                              |  |  |  |  |  |
| 7.  | Let $f(x) = \begin{cases} x^{\alpha} \ln x & , x > 0 \\ 0 & , x = 0 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | } Rolle's theorem is applica | ble to f for $x \in [0,1]$ , if $\alpha =$ | [IIT-JEE Screening 2004]     |  |  |  |  |  |
|     | (a) -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) -1                       | (c) 0                                      | (d) $\frac{1}{2}$            |  |  |  |  |  |
| 8.  | The value of <i>a</i> for which the equation $x^3 - 3x + a = 0$ has two distinct roots in [0, 1] is given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                            |                              |  |  |  |  |  |
|     | (a) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) 1                        | (c) 3                                      | (d) None of these            |  |  |  |  |  |
| 9.  | Let <i>a</i> , be two distinct roots of a polynomial $f(x)$ . Then there exists at least one root lying between <i>a</i> and <i>b</i> of the formula $f(x)$ is the formula $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ are the formula $f(x)$ and $f(x)$ and $f(x)$ are the formula $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ are the formula $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ are the formula $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ and $f(x)$ are the formula $f(x)$ are the f |                              |                                            |                              |  |  |  |  |  |
|     | polynomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                            |                              |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $f'(x)$                  | (c) $f''(x)$                               | (d) None of these            |  |  |  |  |  |
| 10. | If $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + \dots + \frac{a_{n-1}}{2} + a_n = 0$ . Then the function $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$ has in (0, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                            |                              |  |  |  |  |  |
|     | (a) At least one zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) At most one zero         | (c) Only 3 zeros                           | (d) Only 2 zeros             |  |  |  |  |  |
| *** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                              |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                            |                              |  |  |  |  |  |

Get More Learning Materials Here :






# ${\cal A}$ nswer Sheet

| Assignment (Basic and Advance Level) |   |   |   |   |   |   |   |   |    |  |  |  |  |
|--------------------------------------|---|---|---|---|---|---|---|---|----|--|--|--|--|
|                                      |   |   |   |   |   |   |   |   |    |  |  |  |  |
| 1                                    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |  |  |
| b                                    | d | b | a | a | b | d | d | b | a  |  |  |  |  |

Get More Learning Materials Here : 📕



